New
 

Schulung - IBM 0A028G - Introduction to Time Series Analysis Using IBM SPSS Modeler (v18.1.1)

  • Live Online oder Präsenz
Download als PDF
DURCHFÜHRUNG MIT TERMIN
Nr.
30125

Dauer
1 Tag ( 7 Stunden)

Preis
800,00 € netto
952,00 € inkl. 19% MwSt.
TERMIN UND ORT NACH ABSPRACHE
On-demand Training
Sind Sie an diesem Thema interessiert?
Unsere Experten entwickeln Ihr individuell angepasstes Seminar!

Teilen Sie dieses Seminar

Overview

This course gets you up and running with a set of procedures for analyzing time series data.  Learn how to forecast using a variety of models, including regression, exponential smoothing, and ARIMA, which take into account different combinations of trend and seasonality. The Expert Modeler features will be covered, which is designed to automatically select the best fitting exponential smoothing or ARIMA model, but you will also learn how to specify your own custom models, and also how to identify ARIMA models yourself using a variety of diagnostic tools such as time plots and autocorrelation plots.

Zielgruppe

Wer sollte teilnehmen:

Zielgruppe

Audience

Roles:  Business Analyst, Data Scientist
Specifically, this is an introductory course for:
•  Anyone who is interested in getting up to speed quickly and efficiently using the IBM SPSS Modeler forecasting capabilities

Voraussetzungen

Prerequisites

• Familiarity with the IBM SPSS Modeler environment (creating, editing, opening, and saving streams).
• General knowledge of regression analysis is recommended but not required

Trainingsprogramm

Trainingsprogramm

Course Outline

1: Introduction to time series analysis
Explain what a time series analysis is
Describe how time series models work
Demonstrate the main principles behind a time series forecasting model
2: Automatic forecasting with the Expert Modeler
Examine fit and error
Examine unexplained variation
Examine how the Expert Modeler chooses the best fitting time series model
3: Measuring model performance
Discuss various ways to evaluate model performance
Evaluate model performance of an ARIMA model
Test a model using a holdout sample
4: Time series regression
Use regression to fit a model with trend, seasonality and predictors
Handling predictors in time series analysis
Detect and adjust the model for autocorrelation
Use a regression model to forecast future values
5: Exponential smoothing models
Types of exponential smoothing models
Create a custom exponential smoothing model
Forecast future values with exponential smoothing
Validate an exponential smoothing model with future data
6: ARIMA modeling
Explain what ARIMA is
Learn how to identify ARIMA model types
Use sequence charts and autocorrelation plots to manually identify an ARIMA model that fits the data
Check your results with the Expert Modeler

Objective

Introduction to time series analysis

Automatic forecasting with the Expert Modeler

Measuring model performance

Time series regression

Exponential smoothing models

ARIMA modeling

Schulungsmethode

Schulungsmethode

presentation, discussion, hands-on exercises

Weitere Informationen

Termine und Orte

Sortieren nach:

  • Am 06 Jul 2021
    Live Online Training
    800,00 € Netto
    Noch freie Plätze
    Jetzt buchen
    Live Online Training
    Live Online Training
  • Am 06 Jul 2021
    Leinfelden-Echterdingen
    800,00 € Netto
    Noch freie Plätze
    Jetzt buchen
    Informationen zum Veranstaltungsort erhalten Sie mit der Anmeldebestätigung.
Schulung - IBM 0A028G - Introduction to Time Series Analysis Using IBM SPSS Modeler (v18.1.1)